
A Genetic
Algorithm for Task

Scheduling
Sean Strickland, Theisen Sanders

Introduction
Goals
•  Apply a genetic algorithm to a well-known

problem
•  Provide a mechanism to help others

understand how genetic algorithms work

Task Scheduling (I)
Problem: An optimization problem in which
tasks T1, T2, …, Tn are allocated to any
number of processors.

Goal: To reduce the total time it takes to
complete all the tasks and to minimize the
prioritized flow time.

Task Scheduling (II)
Constraints:
•  Procedural
•  Temporal

This is a NP-Complete problem so no optimal
solution can be found in polynomial time
when there are 3+ processors.

Genetic Algorithms
Genetic algorithms are local search algorithms in which a
population of solutions is evolved over generations to
produce better solutions.

Key Components:
•  Solution Encoding
•  Fitness Function
•  Crossover Function

Our Algorithm (I)
Initialization - Use minimum
completion time to generate
initial population

Fitness - Weighted sum of
total time and prioritized flow
time

Selection - Roulette selection
based on fitness values

Our Algorithm (II)
Crossover - Randomly select crossover
index to split each parent into two
sections. Combine diagonally adjacent
sections to produce two children.

Mutation- Randomly choose a task and
move it to a random (dependency
obeying) position in the schedule.

Implementation
Frontend:
 The constraints and tasks are created on the
frontend using an AngularJS framework.

Backend:
 The tasks/constraints are submitted to the
algorithm written in Python and results are
returned to the frontend for display.

Demo

Results

Test # Tasks Dependencies Processors MCT Total Time MCT Flowtime GEN* Total Time GEN* Flowtime

1 3 0 2 5 25 4 23

2 6 3 2 16 211 15 201

3 10 5 3 16 433 14 417

4 15 8 3 17 495 15 455

* Run for 10 generations

Conclusion
●  Genetic algorithms can improve the solution obtained

from basic task scheduling heuristics while having a
minimal effect on performance.

●  As with all genetic algorithms, performance and

optimality of results are in the fine-tuning.

References

Garey, M. R., D. S. Johnson, and R. Sethi. "The Complexity of Flowshop and Jobshop

Scheduling." Mathematics of Operations Research 1.2 (1976): 117-29. Print.

Kaur, Kamaljit, Amit Chhabra, and Gurvinder Singh. "Heuristics Based Genetic

Algorithm for Scheduling Static Tasks in Homogeneous Parallel System."

International Journal of Computer Science and Security 4.2 (2010): n. pag. Print.

Questions?

