
 

A Genetic Algorithm for Task Scheduling 
Strickland, Sean and Sanders, Theisen 

Iowa State University 
 

 
 
 

Abstract 
Task scheduling is an optimization problem where a set of tasks 
are allocated to a finite number of processors.  This has been a 
prevalent concept in computing for a long time, and has proven 
difficult because the problem is NP-Complete for more than two 
processors.  Due to this complexity, a heuristic approach is 
required to effectively tackle the general task-scheduling 
problem. In this paper we explore using a genetic algorithm for 
this purpose.  Genetic algorithms are local search algorithms in 
which a population of solutions is evolved over generation to 
produce more optimal solutions.  We initialize this population 
using random mutations of the solution acquired from a simple 
minimum completion time heuristic.  The population is then 
evolved over generations; with each solution’s fitness measured 
by the total time (time for schedule to complete) and prioritized 
flow time (sum of task completion times weighted by their 
priority) measures.  Our results show that this process can be 
effective at producing good solutions to the general task-
scheduling problem. 
 
 

Introduction 
We began this project with three goals. The first was to 
apply a genetic algorithm to a well-known NP-Complete 
problem. The second was to learn more about genetic 
algorithms ourselves. Lastly, we wanted to provide a way 
for others to easily understand what genetic algorithms 
are, why they are useful, and how they work. Task 
Scheduling became our problem when we realized how 
applicable it is to the computing world and that since an 
optimal solution cannot be found in polynomial time, a 
genetic algorithm could provide a good solution 
compared to other common heuristics. 
 
 

Problem 
The problem of task scheduling is something that can take 
a very different form depending on the application. Here 
we will define our task-scheduling problem. 
 
Task Scheduling 
In general, task scheduling is the problem of allocating 
time and resources for the running of a set of tasks in an 
efficient manner.  In this paper, we assume some finite 
number of processors to execute tasks, which is consistent 
with the very common problem of multitasking.  We also 

assume that the system is non-preemptive, which means 
no task can be interrupted once its execution begins. 

The efficiency of a schedule is determined by 
two measures. The first is total time, which is the time it 
takes for the longest running processor to finish executing 
tasks. The second is the prioritized flow time, which is the 
sum of all the completion times of the tasks, weighted by 
priority. By minimizing total time we know that a 
schedule finishes as quick as possible; by minimizing 
prioritized flow time we know that all task are being 
executed as quickly as the can in the schedule with higher 
priority tasks being executed first.  

In the real world there are often further 
constraints on these tasks, which determine whether a 
schedule is valid or acceptable.  In this paper we assume 
two possible constraints. Procedural constraints are 
constraints on tasks such that they cannot be executed 
until other tasks complete. Temporal constraints are time 
constraints that can be placed on the schedule. 

The complexity of this task scheduling problem 
has been shown to be NP-Complete (Garey, Johnson, and 
Sethi 1976) for problems with three or more processors. 
This means that no optimal solution can be found in 
polynomial time. So we implemented a genetic algorithm 
to try to find a suboptimal solution such that that solution 
is good and the run time is less than that of most other 
heuristics. 
 
Genetic Algorithms 
Genetic algorithms are local search algorithms in which a 
population of solutions is maintained and evolved over 
generations to produce better solutions.  A solution is 
usually represented by a string of characters from a finite 
alphabet.  A population is a set of these solutions (or 
individuals), a portion of which are used to reproduce and 
create the next generation population.  The reproduction 
process usually involves randomly selecting a crossover 
portion of the solution string, which two solutions will 
swap to form some number of new solutions for the next 
generation.  In addition, there is a random chance that an 
individual solution may mutate (be modified slightly) 
before the next generation.  A fitness function is then used 
to determine which solutions survive to the next 
generation. 

The key to a genetic algorithm’s performance 
lies in the choice of string representation for the solution, 



as well as the choice of fitness function used to influence 
which solutions survive to the next generation.  A good 
solution representation is one where characters next to 
each other in the string are related to each other in a 
meaningful way that has an impact on the fitness of the 
solution.  A good solution, along with a fitness function 
that accurately measures the utility of a solution, allows 
small good features of a solution to form independently of 
each other, likely rewarding the solution it is a part of 
with the gift of surviving and reproducing.  Through 
multiple iterations of reproduction, these independently 
formed good features can come together in children to 
form more optimal solutions. 

Given an appropriate schedule representation 
(one where the positions of tasks in the representation 
relate to the order and processor in which tasks are run), 
and fitness function that accurately evaluates the 
efficiency of a schedule, it is reasonable to suspect that a 
genetic algorithm could be used effectively in task 
scheduling problems described in the previous section. 
 
 

The Algorithm 
In this section we describe in detail the genetic algorithm 
developed and used during our research.  To accomplish 
this, we will describe each of the components key to 
genetic algorithms. 
 
Solution Representation 
A schedule is represented as a list of lists of tasks.  Each 
inner list represents a processor, and the tasks in the list 
represent the tasks (in order) that will run on that 
processor.  An example representation for an eight task 
schedule is shown in figure 1.  
 

 
Figure 1 - Representation of solution 

Initialization 
Initialization involves building up the initial population.  
The first solution in our initial population is created using 
a simple minimum completion time heuristic. The 
minimum completion time for a task is recursively 
defined as the duration of the task plus the maximum of 
the minimum completion times of the task’s 
dependencies, or just the task’s duration if the task has no 

dependencies.  The tasks are then sorted by their 
minimum completion times in ascending order and 
assigned to processors in a round-robin manner.  This 
prevents any direct dependency violations and hopefully 
produces an initial solution with some optimal qualities.  
The rest of the population is then produced from random 
mutations of the initial solution.  
 
Fitness Function 
The fitness function evaluates the optimality of a schedule 
by computing a weighted sum of the total time and 
prioritized flow time measures mentioned above.  The 
schedule is first “inflated” (the process of setting the start 
times of the tasks) to satisfy procedural constraints.  The 
optimal inflation (each task starts as early as possible) can 
be computed efficiently by considering the DAG (directed 
acyclic graph) formed by the procedural constraints on the 
tasks.  After the schedule is inflated, the total time and 
prioritized flow time measures can be easily computed, as 
well as any violations to temporal constraints.  These 
factors are then subtracted from a total time bound and 
prioritized flow time bound computed during 
initialization, weighted, and added to determine a fitness 
score for the schedule. 
 
Selection 
The selection process is responsible for selecting the 
solutions in the population that get to survive to the next 
generation.  This is done by using a roulette selection 
method in which each solution has a random chance, 
proportional to its fitness value, of surviving to the next 
generation.  A fitness value of zero is reserved for invalid 
solutions, such as solutions that have obtained multiple of 
the same task through the reproduction process.  Such 
solutions have zero chance of surviving to the next 
generation. 
 
Reproduction 
Each generation, each solution has a random chance of 
being involved in reproduction.  Reproduction between 
two solutions involves first randomly choosing a 
crossover index, as represented by the vertical dotted line 
in figure 2.  This process splits the two schedules into four 
pieces.  Diagonally adjacent pieces are then put together 
to produce exactly two child solutions, which are 
immediately added to the population. 
 
Mutations 
Each generation, each solution has a random chance of 
being mutated.  Mutation of a solution involves choosing 
a random task in the schedule and moving it to a random 
position in the schedule.  One constraint we put on the 
mutation process is that we only randomly choose from 



dependency obeying positions, meaning for example we 
will not place a task T2 before task T1 if T2 depends on 
T1.  The diagonal dotted arrows in figure 2 represent the 
process of mutation. 
 

 
Figure 2 – Selection of crossover index 

 
Implementation 

Our algorithm was built with the Python programming 
language. This was chosen because we were both 
somewhat familiar with they language, and it has been 
shown that the Python language promotes quick 
development and fast turn around time. Additionally we 
were familiar with several web frameworks written in 
Python that would be able to easily support our single 
page web application. It made sense to choose a single 
language for the backend process.  
 
Backend 
The backend is written in Python and utilizes a web 
microframework for serving up the static resources as 
well as providing endpoints to tie into the algorithm. The 
web framework accepts a JSON dictionary of the tasks 
and constraints as specified by the frontend. It converts 
this dictionary into a format recognized by the algorithm 
and calls upon the algorithm to generate an optimal 
schedule. Upon completion of the genetic algorithm, it 

returns a JSON formatted representation of the optimal 
schedule back to the client. 
 
Frontend 
The frontend provides two important things to the 
application. The first is a way to input tasks and define the 
algorithm constraints. This has been accomplished 
through the use of simple web forms, with the schedule 
updating on every constraint change. The second thing the 
frontend provides is a way to display a task schedule. This 
has been accomplished using the AngularJS MVC 
framework and setting up a table element that 
automatically mirrors a JavaScript object representing the 
best schedule that was found by the algorithm. 
 
 

 
Figure 3 - An example of a task schedule in the UI 

 
Results 

During testing we wanted to find out whether our genetic 
algorithm was able to produce more optimal solutions 
than the minimum completion time heuristic used during 
initialization of the algorithm.  This would provide a good 
measure of whether genetic algorithms can be used 
effectively to improve the optimality of solutions in task 
scheduling.  We arbitrarily chose test inputs of varying 
complexities and used the total time and prioritized flow 
time measures to grade the results of each algorithm.   

The results, along with relevant details of each 
test are recorded in the Table 1 on the previous page.  In 
general, the genetic algorithm was able to improve on the 
solution produced by the minimum completion time 
heuristic, especially in the prioritized flow time measure.  

 
Table 1 - Results 

Test # Tasks Dependencies Processors MCT Total Time MCT Flow Time GEN* Total Time GEN* Flow Time 

1 3 0 2 5 25 4 23 

2 6 3 2 16 211 15 201 

3 10 5 3 16 433 14 417 

4 15 8 3 17 495 15 455 

 



This improvement is more dramatic for more complex test 
cases with a greater number of dependencies and more 
processors for allocation. 

 
 

Conclusion 
As with all genetic algorithms, the performance and 
optimality of solutions is in the fine-tuning.  This is 
something we encountered as we tweaked the weights 
used in the fitness function and decided on the constraints 
enforced during reproduction and mutations.  However, 
given an appropriate solution encoding and accurate 
fitness function, it is reasonable to believe they could be 
used to effectively find optimal solutions in very large 
solution spaces, such as the general task scheduling 
solution space.  Our results support the idea that genetic 
algorithms could be valuable local search tools for 
producing good solutions to task scheduling. 
 
 

References 
Garey, M. R., D. S. Johnson, and R. Sethi. "The Complexity of 
Flowshop and Jobshop Scheduling." Mathematics of Operations 
Research 1.2 (1976): 117-29. Print. 
 
Kaur, Kamaljit, Amit Chhabra, and Gurvinder Singh. 
"Heuristics Based Genetic Algorithm for Scheduling Static 
Tasks in Homogeneous Parallel System." International Journal 
of Computer Science and Security 4.2 (2010): n. pag. Print. 


